
Adaptive Load-Balancing Algorithms using
Symmetric Broadcast Networks

Sajal K. Das

Center for Research in Wireless Mobility and Networking (CReWMaN)

Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, Texas 76019

E-mail: das@cse.uta.edu

Daniel J. Harvey

Department of Computer Science

Southern Oregon University, Ashland, Oregon 97520

E-mail: harveyd@sou.edu

Rupak Biswas

NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, California 94035

E-mail: rbiswas @nas.nasa.gov

Proposed running head:

ADAPTIVE LOAD BALANCING USING SBN

Address for manuscript correspondence:

Rupak Biswas

Mail Stop T27A-1

NASA Ames Research Center

Moffett Field, CA 94035-1000

E-mail: rbiswas@nas.nasa.gov

Phone: (650) 604-4411

Phone: (650) 604-3957

Abstract

In a distributed computing environment, it is important to ensure that the processor work-

loads are adequately balanced. Among numerous load-balancing algorithms, a unique ap-

proach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a

robust communication pattern among the processors in a topology-independent manner. In this

paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms,

and implement them on an SGI Origin2000. A thorough experimental study with Poisson-

distributed synthetic loads demonstrates that our algorithms are effective in balancing system

load. By optimizing completion time and idle time, the proposed algorithms are shown to

compare favorably with several existing approaches.

Key words: Dynamic load balancing; network topology; job migration; performance study.

1 Introduction

To maximize the performance of a multicomputer system, it is essential to evenly distribute the

workload among the available processors. In other words, it is desirable to prevent, if possible,

the condition where one processor is overloaded with a backlog of jobs to be serviced while an-

other processor is lightly loaded or even idle. The load-balancing problem is closely related to

scheduling and resource allocation, and can be either static or dynamic. In static load balancing

algorithms [18], the decisions are made at compile time when resource requirements are estimated.

On the other hand, dynamic algorithms [2, 7, 1 l, 12, 18, 23] allocate/reallocate resources at run-

time based on a set of system parameters, which may determine when jobs can be migrated and

also account for the associated overhead in such a transfer [17]. Determining the parameters to

be maintained and how to broadcast them among processors are important design considerations,

normally resolved by distributed scheduling policies [10, 13].

This paper deals with decentralized load balancing in distributed-memory multicomputers in

which processors are connected by a point-to-point network topology and communicate with one

another via message passing. The network is assumed to be homogeneous and any job can be ser-

viced by any processor; however, jobs cannot be rerouted once execution begins. We have confined

the scope of this paper to independent tasks only. The workload of a processor is determined by

the length of its local job queue.

In particular, we propose three efficient dynamic load-balancing algorithms which make use of

a logical and topology-independent communication pattern among processors, called a symmetric

broadcast network (SBN), introduced in [5, 6]. These algorithms will be called (i) Basic SBN

algorithm, (ii) Hypercube Variant, and (iii) Heuristic Variant.

SBN-based load balancing can be initiated by any processor that has too many or too few jobs

to process based on certain threshold values. Balancing messages are first broadcast so that the cur-

rent system load of jobs can be estimated. This is followed by distribution messages which reassign

jobs to minimize the possibility of processors becoming idle. SBN-based load balancing runs con-

currently while..... neLo!ieati,_n,,. _ ._D,',_cos¢i-g__ ..,_ co,,tin,,o¢....__. A topology-independent logical network, such

as an SBN, helps provide predictable communication patterns to applications that make use of wide

area networks of processors for both load balancing and interprocessor communication. An SBN

is also effective when implementing message-passing applications for multicomputer systems in a

portable manner.

The SBN topology can easily be embedded into specific networks if efficiency is an issue. For

example, one of our SBN-based algorithms (Hypercube Variant) naturally adapts to a hypercube

topology, and is thus used to compare with other hypercube-based dynamic load-balancing meth-

ods. This helps us determine whether the measured performance improvements are due to the

effects of the network topology or the proposed load-balancing schemes themselves.

Based on their operational characteristics, our SBN-based algorithms can be classified (accord-

ing to [19]) as: (a) Adaptive, since the performance adapts to the average number of queued jobs;

(b) Symmetrically Initiated, since both senders and receivers can initiate load balancing; (c) Sta-

ble, since the network is not burdened with excessive load-balancing traffic; and (d) Effective, since

system performance does not degrade while balancing workloads.

The performance of the proposed SBN-based algorithms is analyzed by conducting a thorough

experimental study on a 32-processor SGI Origin2000 machine, using the Message-Passing In-

terface (MPI) paradigm. A preliminary version of this work that describes experiments running

on an IBM SP2 is available in [3]. Investigating the programming paradigm is beyond the scope

of this paper. Since the SBN strategy is topology and architecture independent, it made sense to

use a portable library like MPI. Furthermore, any benefit provided by exploiting the Origin2000

shared-memory architecture would be equally available to all the other load-balancing schemes.

We use Poisson-distributed synthetic loads and compare the performance with other methods

such as Random [71, Gradient [14, 15], Sender Initiated [8], Receiver Initiated [8], Adaptive Con-

tracting [8], and Tree Walking [20], as summarized in Section 2. Our experiments demonstrate

that the quality of load balancing achieved by the SBN approach compares favorably with respect

to four metrics: (i) message traffic per processor, (ii) total jobs transferred, (iii) maximum variance

in processor idle time, and (iv) total completion time. For example, under heavy system loads,

the SBN algorithms complete in 6% to 22% less time than other balancing algorithms that are

analyzed in this paper. Idle time is also reduced by over 67%. Under light system loads, the SBN-

based algorithms incur significantly less message traffic as compared to other popular balancing

algorithms such as Gradient and Receiver Initiated.

This paper is organized as follows. Section 2 reviews several existing approaches to dynamic

load balancing that are used as comparisons. Section 3 defines SBNs, presents some of their

properties, and discusses the general characteristics of our proposed load-balancing algorithms.

3

Section4presentsthreeSBN-basedload-balancingschemesandanalyzestheir performancechar-
acteristics. Section5 containsexperimentalresultsthat comparethe SBN algorithmsto other

load-balancingtechniques.Thefinal sectionconcludesthepaper.

2 Related Work

A wide variety of dynamic load-balancing algorithms have been proposed for improving multi-

processor performance [2, 7,8, 9, 11, 12, 14, 15, 18, 20, 21, 22, 23, 24]. Let us first summarize

the underlying characteristics of some of the most popular methods which are used to compare the

performance of our SBN-based algorithms.

Random [7]: If the number of jobs queued at a given processor is larger than a certain threshold,

additional jobs are randomly distributed among its neighbors. Although a single distribution

message may contain several jobs, a particular job cannot be migrated multiple times. In

other words, once a job is migrated, it is queued for processing.

Gradient [14, 15]: Jobs migrate from overloaded to lightly-loaded processors based on a sys-

temwide gradient. Each processor maintains, for each of its immediate neighbors, the min-

imum number of communication hops to the nearest lightly-loaded processor. Whenever

these values change, they are broadcast to all the neighbors. However, because of network

dynamics, this is only an approximation to the true system load. Each processor also has a

load status flag which, by comparison with system thresholds, determines whether the pro-

cessor is overloaded, lightly loaded, or moderately loaded. Jobs are routed to the neighbor

lying on the path to the nearest lightly-loaded processor, and a job can migrate several times

before being finally processed.

Receiver Initiated [8]: Load balancing is triggered by a processor with load level below the

system threshold. The lightly-loaded processor broadcasts to its neighbors a job request

message which contains information about its queue. Upon receiving this message, each

neighbor compares its own queue length to that of the requesting processor. If the local

queue size is larger, the neighboring processor replies with a single job. To prevent instability

under light system load conditions, the requesting processor waits for a specified amount of

time for a reply before initiating another job request. Like the Gradient scheme, it is possible

for a job to be migrated multiple times before being finally processed.

Sender Initiated [8]: Unlike Receiver Initiated, load balancing occurs when processors become

overloaded. To prevent instability under heavy system loads, each processor exchanges load

information with its neighbors. More precisely, load values are exchanged when a local

queue length is halved or doubled, so job migrations occur less frequently than system load

4

changes.Additionaljobs aredistributedto lightly-loadedneighbors.Like Random,multiple

job migrationis notallowed.

Adaptive Contracting [811:When jobs arrive at a processor, it distributes bids to all of its neigh-

bors. The neighbors respond to the bid with a message containing the number of jobs in their

respective local queues. The originating processor then distributes jobs to those neighbors

that have loads smaller than the system threshold. The number of jobs migrated is such that

jobs are equally distributed among the originating processor and its lightly-loaded neighbors.

Tree Walking [20]: Utilizing a binary tree topology, the fixed root processor initiates a load-

balancing operation when one of the processors becomes idle. Processing is temporarily

suspended when load balancing is underway. First, a balance message is broadcast through

the network. Processors respond by sending their current load level back towards the root

using a global reduction operation. The correct systemwide load level is then broadcast.

Finally, jobs are distributed so that every processor has an equal number of jobs.

Despite some similarities between our SBN-based approach (details given later in Section 4)

and the Tree Walking Algorithm (TWA), there are several major differences as outlined

below:

• TWA always initiates load balancing from a single root processor. It is, therefore, more

restrictive and has less potential for being fault tolerant than SBN, which allows any

processor to initiate load balancing.

• Application processing is temporarily suspended when TWA executes because it is

unable to mask balancing overhead by overlapping processing and load balancing. In

contrast, SBN b_dancing proceeds concurrently with application processing.

• TWA is designed to perfectly equalize the job count at every processor leading to more

message passing. SBN balancing attempts to minimize the possibility that a particular

processor will become idle; thus, a perfectly equalized job count is unnecessary.

• TWA triggers load balancing only when processors become idle. SBN anticipates idle

conditions and triggers balancing ahead of time.

• TWA requires communication messages to be broadcast to all processors when bal-

ancing the system. The SBN Heuristic Variant allows balancing to be accomplished

without this requirement.

All of these algorithms can be classified as being iterative in nature because they strive to reach

a global balanced state through successive nearest-neighbor operations by individual processors.

Iterative methods, in general, are a good match for direct point-to-point interconnection networks

5

commonlyusedfor communicationsin modernmulticomputers.Furthermore,they are flexible,

preservecommunicationlocality,andareinherentlyscalable.
Thereare two main classesof iterativemethods:diffusion [2, 21, 23] and dimensionex-

change[2,23, 24]. Diffusion algorithmsrequireprocessorsto communicatesimultaneouslywith

all of itsnearestneighborsto reachalocal loadbalance.On the other hand, in dimension exchange,

a processor balances workload with each neighbor at a time. Diffusion algorithms are more pop-

ular because of their simplicity; however, their efficiency depends on a parameter that determines

the behavior of the local balancing operation. In [12], an improved diffusion algorithm based on

Chebyshev polynomials was proposed. Results showed that performance was better than the base-

line diffusion method, but at the additional cost of calculating two eigenvalues. The drawback of

the dimension exchange method is that equidistribution of the workload between a pair of pro-

cessors at each balance operation is not necessarily efficient. It has therefore been generalized by

using an exchange parameter to control the workload distribution between pairs of processors [22].

For processor networks that can be represented as a cartesian product of graphs, [9] proposed an

alternating-direction dimension exchange scheme that reduces the number of iterations but at the

cost of significantly greater job transfers. A refined scheme switches directions every other itera-

tion to lower the amount of job migration.

3 Preliminaries

In this section, we define the concept of symmetric broadcast network (SBN), describe its prop-

erties, and present the general characteristics of our proposed load-balancing algorithms based on

SBNs.

3.1 Definition of SBN

An SBN defines a communication pattern (logical or physical) among the P processors in a mul-

ticomputer system [5, 6]. An SBN(d) of dimension d > 0, is a (d + 1)-stage interconnection

network with P = 2 a processors in each stage. It is constructed recursively as follows:

• A single processor forms the basis network SBN(0) consisting of a single stage, denoted as

stage 0, with no communication link.

• For d > 0, an SBN(d) is obtained from a pair of SBN(d - 1)s as follows:

(a) Keep the processor labels in the first SBN(d- 1) unchanged as 0 through 2 d-1 - 1; relabel

the processors of the second SBN(d - 1) as 2d-i through 2 d - 1.

(b) Create an additional communication stage d, containing processors 0 through 2 a - 1.

Connect each processor j in stage d - 1 to processor (j + 2 a-i) rood 2 a in stage d.

6

SBN(2)

Stage 2 Stage 1 Stage 0

SBN(3)

Stage 3 Stage 2 Stage 1 Stage 0

@

Figure 1: Construction of SBN(3) from a pair of SBN(2)s. Dashes indicate the new connections.

(c) If stage d - 2 exists, for each processor j in stage d - 2, define k to be the successor of

j in stage d - 1. Likewise, define m to be the successor of k in stage d (as just created in

step (b) above). Connect processor j in stage d - 2 to processor m in stage d - 1.

An example of how an SBN(3) is formed from two SBN(2)s is shown in Fig. 1. An SBN defines

unique communication patterns among the processors in the network. For any source processor at

stage d of SBN(d), there are d = log P stages of communication where each processor appears

exactly once. The successors and predecessors of each processor in a given stage i are uniquely

defined by specifying the label of the originating processor and the communication stage number.

Messages originating from source processors are appropriately routed through the SBN.

3.2 Properties of SBN

Among a total of eight possible communication patterns in SBN(3), consider the two patterns

shown in Fig. 2. The paths in Fig. 2(a) are used to route messages originating from processor 0,

while those in Fig. 2(b) are for messages originating from processor 5. Let n_ denote a proces-

sor label at stage s in Fig. 21b) and let n_ be the corresponding processor label in Fig. 2(a). Then,

n_ = n_)® 5, where G is the exclusive-OR operator. In general, if n_ is the corresponding processor

s SOx"in the communication pattern for messages originating from source processor x, then n x = n o

Thus, all SBN communication patterns can be derived from the template pattern having proces-

sor 0 as the root. The predecessor and two successors of ng can then be computed as follows:

Predecessor: ((n_ - 2 s) _/2 s+l) mod 2 a, if 0 _< s < d (V is the inclusive-OR operator),

7

Stage 3 Stage 2 Stage 1 Stage 0

(a)

Stage 3 Stage 2 Stage 1 Stage 0

(b_

Figure 2: Two communication patterns in SBN(3).

Successor_l:n_+2 s-l, if 1 <s<d,

Successor_2: n_ - 2 8-1, if 1 _< s < d.

Figure 2 illustrates two possible SBN communication patterns, but many others can easily be

derived by slightly altering the SBN definition to match a given network topology and application

requirements. Multiple randomly-selected SBN patterns help distribute messages more evenly,

enhance network reliability, and allow various applications to be written using different communi-

cation patterns. For example, the SBN communication pattern for processor 0 can be defined with

the help of a one-dimensional array implementation of a full binary tree such that the predecessor

and successors of a processor are given by:

Predecessor: /-_/, if0 _<s < d,
L ..I

Successor_l:2xn_+l, if l<s<d,

Successor_2:2 x n_, if 1 < s < d.

Let us demonstrate how to embed a hypercube topology within an SBN, as will be required

for the Hypercube Variant of our load-balancing algorithm. This embedding uses a modified bi-

nomial spanning tree, which consists of two binomial trees 1 connected back-to-back. Figure 3

shows such a communication pattern for a 16-processor network which is used to route messages

originating from processor 0. The solid lines of the diagram represent the actual SBN(4) pattern,

whereas the dashed lines are used to gather load-balancing messages at a single destination proces-

sor (processor 15, in this case). This embedding ensures that all successors and predecessors at any

communication stage are adjacent processors in the hypercube. Also, every originating processor

has a unique destination. Finally, if the processors are numbered using a binary string of d bits,

the number of predecessors for a processor x is max { 1, b}, where b is the number of consecutive

leftmost 1-bits in the binary address of x.

1A binomial tree B(k) of 2k nodes is an ordered tree defined recursively as follows [1]: B(0) consists of a single

node; B(k) consists of two B(k - 1)s linked together such that the root of one is the leftmost child of the root of the

other.

8

Stage4 Stage3 Stage2 Stage1 Stage0

Figure3: Modifiedbinomial spanningtreeusedasa hypercubeSBN(4).

3.3 General Characteristics of Proposed Load Balancers

We discuss below some general features that are shared by all three SBN-based adaptive load-

balancing algorithms presented in Section 4. We also describe various system thresholds, the two

types of messages that are processed by the SBN approach, and pseudo codes for the procedures

common to all three algorithms.

3.3.1 System Thresholds

In general, many load-balancing algorithms are very susceptible to the choice of system thresh-

olds [16]. A proper selection of these threshold values has proven helpful in optimizing our algo-

rithms as well.

The proposed SBN-based algorithms adapt their behavior to the system load. Under heavy

(respectively, light) loads, the balancing activity is primarily initiated by processors that are lightly

(respectively, heavily) loaded. This activity is controlled by two system thresholds: MinTh and

MaxTh, which are the minimum and the maximum system load levels. The system load level,

SysLL, is the average number of jobs queued per processor. If a processor p has a queue length

QLen(p) < MinTh, load balancing is initiated. If, on the other hand, QLen(p) > MaxTh, the

extra jobs ExLoad = OLen(p) - MaxTh are distributed through the network, without explicit load

balancing. However, if this distribution overloads a processor in the final stage (stage 0), load

balancing is triggered.

The performance of our algorithms is affected by the chosen values for MinTh and MaxTh. For

instance, MinTh must be large enough to receive sufficient jobs before a lightly-loaded processor

becomes idle. However, it should not be too large to initiate unnecessary load balancing. Similarly,

if MaxTh is too small, it will cause an excessive number of job distributions; if it is too large, jobs

will not be adequately distributed under light system loads. Basically, once there is sufficient load

9

onthenetwork,very little load-balancingactivity shouldberequired.

3.3.2 Message Types

Two types of messages are processed by the SBN-based algorithms. The first type is a balancing

message which originates from an unbalanced processor and is then routed through the SBN. The

cumulative total of queued jobs, TotalJQ, is computed to obtain a snapshot value of SysLL.

The second type of messages is a distribution message, which is used during a load-balancing

operation to route the TotalJQ value though the network and to reassign jobs after the balancing

message is broadcast. Each processor upon receipt of such a message, updates its local values

of SysLL, NinTh, and NaxYh. Distribution messages can also be sent to predecessor processors

prior to completing the broadcast of the balancing message. This action occurs so that jobs can

be assigned to predecessors having less than MinTh jobs queued and about to go idle. Finally,

distribution messages are sent when a load-balancing operation is not in progress and a processor

has greater than MaxYh jobs queued. In this case, ExLoad jobs are reassigned.

If the communication from one processor to its neighbors is completed in constant time, a single

load-balancing operation requires O (log P) time since there are d+ 1 = (log P)+ 1 communication

stages in SBN(d). However, if multiple balancing operations are processed simultaneously, the

worst case complexity can be shown to be O(log 2 P) [5]. To reduce message traffic, a processor

does not initiate additional load-balancing activity until all previous balancing messages passing

through it have been serviced.

3.3.3 Common Procedures

All three of our load-balancing algorithms consist of four key procedures. The first two, GetBal-

ance and GetDistribute, are used to process balancing and distribution messages that are received,

while the other two, Balance and Distribute, route those messages to the successors in the SBN. Im-

plementation details of these procedures depend on the particular load-balancing algorithm used.

Figure 4 presents the pseudo code that is common to all our SBN-based load-balancing algorithms,

and is executed in parallel by every processor. The UpdateLoad procedure adjusts the system

thresholds described in Section 3.3.1. It is called by the GetBalance and GetDistribute procedures

when load-balancing operations complete.

In our experiments, we found that setting ConstParam : 2 proved to be the most effective

value. MinTh is then set so that load balancing will begin before processors go idle. The setting

of MaxTh grows exponentially with SysLL because the need for load-balancing activity decreases

rapidly as SysLL increases. The mathematical justification for this policy is presented in Sec-

tion 4.4.

10

Procedure Main

Repeat forever

Call GetBalance to process balancing messages received

Call GetDistribute to process distribution messages received

If (_Len(p) > MaxTh)

ExLoad ----QLen(p) - MaxTh

Call Distribute to route ExLoad jobs through the SBN

If(QLen_) < MinTh)

Call Balance to initiate a balance operation and determine TotalJQ

Resume processing of application program

End Repeat

Procedure UpdateLoad(Total JQ)

SysLL = _TotalJO /jo]

MaxTh = SysLL + 2 [SysLL/ConstParam J

MinTh ----SysLL - i

If(SysLL > ConstParam)MinTh----ConstParam

Return

Figure 4: Common pseudo code for SBN-based load-balancing algorithms.

4 SBN-Based Load-Balancing Schemes

Based on the SBN concept, a baseline dynamic load-balancing technique and two variants are

proposed in this paper. The Basic algorithm and the Hypercube Variant attempt to accurately

compute and maintain the value of SysLL, whereas the Heuristic Variant estimates it.

4.1 Basic SBN Algorithm

In this algorithm, balancing messages are routed through SBN(d) from the source (root) at stage d

to all the processors at stage 0. These messages are then routed back to the root so that TotalJQ

can be computed. Thus, thc originating root processor has an accurate snapshot value of SysLL.

Next, distribution messages are sent to relocate jobs and to broadcast the TotalJQ value. All

processors then update their local SysLL, MinTh, and MaxTh. The extra load of jobs (ExLoad) are

routed as part of this distribution to balance the system load. In addition, if QLen(p) < SysLL for

a processor p, the need for jobs is indicated during the distribution process. Successor processors

respond by routing back an appropriate number of excess jobs, if available. Figure 5 presents the

pseudo code of the Basic SBN algorithm where Stage(p) denotes the SBN stage of processor p

for a given communication pattern (cf. Fig. 2) and JobsRecv is the number of jobs received by it

in a distribution message.

To illustrate the operation of this algorithm, consider SBN(3) in Fig. 6(a). The label and

QLen(p) for each p are shown inside and outside the corresponding circle. For example, proces-

11

ProcedureGetBalance

While (balancing messages remain to be processed)

If (0Len(processor sending this message) < MinTh)

Route L OLen(p) / 2 J jobs to processor sending this message

If (no balance operation active from the SBN root processor)

Increment count of simultaneous balance operations being serviced

If (Stage(p) == 0) Call Balance to route _Len(p) value towards abe root processor
Else

Indicate two balancing messages to be gathered from successors

Call Balance to route balancing message to successors

Else

If (second balancing message remains to be gathered from successors) Continue

If(Stage(p) == d)

Call UpdateLoad(TotalJQ)

ExLoad = QLen(p) - SyaLL

Call Distribute to route ExLoad jobs and TotalJQ value to successors

Decrement count of simultaneous balance operations being serviced

Else Call Balance to route (QLen(p) + QLen(successors)) value to the root processor

End While

Return

Procedure GetDistribute

While (distribution messages remain to be processed)

QLen(p) = QLen(p)+ JobsRecv

If(TotalJQ valuecontainedinmessagereceived)

CallUpd_teLoc_(TotalJQ)

Route rain(QLen(p)- SysLL, SysLL --QLen(predecessor))jobstopredecessor

Decrement countofsimultaneousbalanceoperationsbeingserviced

If (Stage(p)== 0)

If (QLen(p) > NaxTh) Call Balance to initiate new balance operation
Else

ExLoad = QLen(p) - MaxTh

If(thisisabalanceoperation)ExLoad = QLen(p) - SysLL

Call Distribute to route ExLoad jobs and/or TotalJQ value to successors

End While

Return

Procedure Balance

If (Stage(p) == d)

ff (balance operation already underway) Return

Increment count of simultaneous balance operations being serviced

Indicate that a balancing message is expected from successor

Route the balancing message to next SBN stage
Return

Procedure Distribute

If ((this is a non-balance distribution) And (balance operation already underway))
Inhibit the distribution and Return

QLen(p) --QLen(p)- ExLoad

If((ExLoad> O)Or (TotalJ{_valuetosend))Route thedistributionmessagetosuccessors

Return

Figure 5: Pseudo code for the Basic SBN algorithm.

12

Stage 3 Stage 2 Stage 1 Stage 0

Q_:2 _.f_ Q=14

(a)

Figure 6: An example of load balancing using the Basic SBN algorithm:

messages, and (b) during distribution messages.

Stage 3 Stage 2 Stage 1 Stage 0

,-, _Q=8

_ _-_ Q=7

b¢___24 10 __8 Q=8

(b)

(a) during balancing

sor 6 has Q = 3 jobs queued for execution. At processor 0, the initial values are SysLL = L = 4,

MinTh = m = 2, and MaxTh = M = 6. After a load-balancing request is sent through the SBN

and then routed back to processor 0, these values are updated as L = 8, m = 2, and M = 24, using

the UpdateLoad procedure given in Fig. 4. Note that when the balancing is initiated, processor 4

distributes half of its QLen(p) jobs (i.e. [3/21 = 1) back to processor 0. This distribution is shown

by the label on the arrow in Fig. 6(a).

Distribution messages are then used to route excess jobs to the successor processors or to

indicate a need for jobs if QLen(p) < SysLL. Jobs are routed back to the predecessors when

appropriate. Figure 6(b) shows the result of this distribution where the labels on arrows indicate

the number of jobs routed between processors.

To balance P processors, P - 1 balancing messages are first sent through the SBN, which are

then routed back to the root processor so that the SysLL value can be computed through a global

reduction operation. Finally, P - 1 distribution messages are sent to balance the load as well as

broadcast the TotalaQ value through the network. Note that, if a processor has an immediate need

for jobs that can be supplied during load balancing, additional distribution messages are sent from

neighboring processors to satisfy the need. If J such messages are required, a total of 3P - 3 + J

messages will be have to be processed. Since J = O(P), the total number of messages to be

processed is O(P). The depth of the SBN network being O(logP), the total time required to

complete a load-balance operation is O (log P).

4.2 Hypercube Variant

The SBN approach has been adapted for implementation on a hypercube topology, using the mod-

ified binomial spanning tree as illustrated in Fig. 3. This algorithm uses the same control variables

(SysLL, MinTh, and MaxTh), and processes balancing and distribution messages in the same manner

as the Basic SBN algorithm. However, in embedding the SBN onto the hypercube, a processor r at

stage d sends a balance message to each of its adjacent processors at stage d - 1 of the hypercube.

13

Thesemessagesarethen routedthroughthehypercubenetworkandeventuallycollectedat the
singledestinationprocessorq at stage 0. Processor q then accurately computes the current SysLL

value and initiates the distribution process by routing distribution messages back towards the root

processor at stage d. Note that the exclusive-OR property described in Section 3.2 still holds: it

allows any processor to correctly determine the successors and predecessors if the stage number

and the root processor are given.

Other differences between the Basic SBN algorithm and the Hypercube Variant are as follows:

• In the Hypercube Variant, the value of TotalJQ is computed when all balancing messages

arrive at the destination processor. Unlike the Basic algorithm, this is possible because

there is a unique destination for every originating processor in the hypercube embedding.

Distribution messages are then routed back to complete the load balancing. Since there are

P - 1 + P/2 - 1 interconnections in the modified binomial spanning tree (cf. Fig. 3), a

load-balancing operation requires 3P - 4 messages excluding the distribution messages sent

between neighbors to satisfy the immediate need for jobs.

• Balancing messages always proceed from the root processor (at stage d of SBN in the Hyper-

cube Variant) towards stage 0. This contrasts with the Basic SBN algorithm where balancing

messages first proceed from stage d to stage 0, and are then routed back to stage d.

• To minimize the communication overhead in the Hypercube Variant, messages are gathered

from the previous stage whenever more than one message is expected. The Basic SBN

algorithm only needs to gather messages that are being routed back toward the root processor

(because messages going in the other direction have only one predecessor).

• The network topology for the Hypercube Variant is such that the number of predecessor and

successor processors vary at different communication stages, thereby somewhat complicat-

ing the implementation.

4.3 Heuristic Variant

Both the Basic algorithm and the Hypercube Variant are expensive since a large number of mes-

sages has to be processed to accurately maintain the SysLL value. The Heuristic Variant attempts

to reduce this overhead by terminating load-balancing operations initiated by processor p as soon

as QLen(p) is sufficiently large. In general, this strategy reduces the number of messages although

O (P) messages are still needed in the worst case. The pseudo code in Fig. 7 gives the operational

details of the Heuristic Variant of the SBN-based load-balancing algorithm.

As in the Basic algorithm, p initiates load balancing when QLen(p) < MinTh by sending a

balancing message to its SBN successor. However, in the Heuristic Variant, the processor r that re-

ceives this message estimates SysLL by averaging local queue lengths over the processors through

14

Procedure GetBalance

While (balancing messages remain to be processed)

TotalJQ = [P x (OLen(p) + OLen(predecessors)) / (d - Stage(p) + 1)]

OldSysLL = SysLL

Call UpdateLoad(Total JO)

ExLoad = [0Len(p)/ 2 J

If(ExLoad > 0)

If(QLen(p)< SysLL)

Call Balance to route balancing message to successors
Else

Call Distribute to route ExLoad jobs to predecessor
End While

Return

Procedure GetDistribute

While (distribution messages remain to be processed)

JobsQueued = QLen(3:0

Onen(p) = Onen(p) -t- JobsRecv

If(distributiontowardstherootprocessor)

TotalJQ = P x (JobsQueued) q-[aobsRecv / (d- Stage(p) + I)])

Exload = I0Len(p)/ 2 j

ElseTotal J0 = P x (JobsQueued + [JobsRecv / (2(Stage(p)+l)__ i)])

ExLoad = QLen(p)- SysLL

Call UpdateLoad(TotalJQ)

If (ExLoad > O)

Call Distribute to route ExLoadjobs to next SBN stage
End While

Return

Procedure Balance

If (Stage(p) == 0) Return

If (Stage(p) == d)

TotalJQ = P x QLen(p)

Call UpdateLoad(TotalJO)

Route the balancing message to successors
Return

Procedure Distribute

If (Stage(p) =-- O) Return

If (Stage(p) == d)

TotalJQ = P x (SysLL + [QLen(p) - SysLL /P])

Call UpdateLoad(TotalJQ)

ExLoad = QLen(p) - SysLL

QLen(p) = QLen(p)- ExLoad

Route ExLoad jobs with the distribution message to next SBN stage
Return

Figure 7: Pseudo code for the Heuristic Variant.

15

which the balancing message has already passed. If QLen(r) > SysLL, an appropriate number

of jobs (ExLoad = [QLen(r)/2J) is returned via a distribution message as shown in the GetBal-

ance procedure in Fig. 7. In this case, the load-balancing procedure is also terminated. If instead,

QLen(r) < SysLL, the balancing message is forwarded to the next SBN stage. Mathematical

justifications for the Heuristic Variant are discussed in the next subsection.

Job distribution is also accomplished differently in the Heuristic Variant. If p determines that

QLen(p) > MaxTh, it implies a job distribution is necessary. A new estimate of SysLl. is calcu-

lated by p as SysLL = SysLL + [(QLen(p) - SysLL) / P]. It then tries to evenly distribute the

excess load among all the processors in the network. Each processor r receiving a resulting distri-

bution message with JobsRecv jobs updates its own SysLL and QLen(r) values. However, before

updating QLen(r), its SysLL is computed as SysLL = QLen(r) + [JobsRecv / R 1, where R is

the number of processors (including r) in the remaining SBN stages. Note that SysLL is updated

based on QLen(r) and not its original outdated value. Processor r, in turn, distributes jobs in excess

of its own updated SysLL to the next SBN stage. This is reflected in the formulae shown in the

GetDistribute procedure in Fig. 7.

As an illustration, consider an SBN(3) that has a processor p with SysLL = 7, MaxTh = 15, and

QLen(p) = 24. The newly-computed SysLL value is 7+ r(24-7)/8] = 10. The number of jobs that

will be distributed to the successor (only one successor at this stage) is JobsRecv = 24 - 10 = 14.

Suppose that the successor r has SysLL = 9, and QLen(r) = 6. After receiving 14 jobs from p, it

has SysLL = 6 + [14/7] = 8. Thus, 20 - 8 = 12 excess jobs wilt be distributed to the next stage.

A significant advantage of the Heuristic Variant is that the balancing messages do not have to

be gathered in order to calculate SysLL. This reduces the interdependencies associated with the

communication and allows fault tolerance. If a particular processor fails, load balancing can still

be accomplished with the help of the remaining processors.

An additional improvement for both the Basic SBN load-balancing algorithm and its Heuristic

Variant can be obtained by using multiple communication patterns in the SBN. Each time a mes-

sage is initiated, one of the SBN patterns is randomly chosen. Our experiments make use of the

two communication patterns mentioned in Section 3.2 for computing predecessors and successors.

Each of the balancing and distribution messages includes the source processor, the pattern used,

and the stage to which the message is being routed. Since all processors have the SBN template

associated with messages originating from processor 0, the required SBN communication pattern

can be determined.

4.4 Analysis of SBN Message Passing

In a multicomputer consisting of P processors, we assume the arrival of jobs can be modeled by

a Poisson distribution such that the probability of a processor having j jobs is Aj / (e_j!), where

A is the mean arrival rate. If SysLL = k, then by definition, the average number of jobs assigned

16

to a processoris k. Hence, the probability that a processor has exactly j jobs is k j / (ekj!).

This implies the probability, 9j, that a processor in the network has more than j jobs is given by

93 = ! - (_-_,_=0 ki/i!) ,/e_. For examp!e, the probability that all P processors have more than

three jobs is (Oa) e. Now, (93) e > 0.9 if k > 5, and is almost unity if k > 15. This implies that the

need for load-balancing activity rapidly decreases as SysLL increases. Therefore, it makes sense

to increase MaxTia exponentially with increasing SysLL.

To analyze the Heuristic Variant, let us compute the expected number of jobs, E Jobs, that are

returned to the processor that initiates the SBN load-balancing algorithm. We also compute the

expected number of processors, EProcs, that will be visited during a balancing operation. In this

way, we can determine whether sufficient jobs are returned and if message traffic is reduced by

utilizing the Heuristic Variant. In the following, we mathematically model SBN message passing.

For this purpose, we define the following four probability vectors:

• cI) = (¢0, ¢1,'", On) defines the distribution of jobs queued at a given processor, where ¢i

is the probability that the processor has i jobs queued for a specified value of SysLL.

• ¢_stop = (0, 0,''', O, _)stop, Ostop+l,'" ", On) is the likelihood that balancing will terminate at

a given processor. Here, stop is the number of jobs queued at a processor that will prevent

the SBN Heuristic Variant from forwarding a balancing message to the next stage.

• (I)co_ti,_,_e = (¢0, O1,'", 8stop-1, 0,---, O) defines the likelihood that balancing messages

will be sent to successor processors.

C(V) is the probability vector computed by applying the function C to the probability vector

V, and indicates the number of jobs distributed to a processor's predecessor. Here, V is the

vector defining the probabilities of jobs queued at a processor after receiving distribution

messages from its successors.

Proposition 1 /f V1 = ('vlc, v11,..., vln) and V2 = @20, vm,.. ", V2m) are probability vectors,

then V1 _) V.2 --- (v0, vl,- -., Vm+n), where vi = _-_j+a=i VuV2k is also a probability vector.

Proof Consider the product (__0 vli)(_-_j_=o v2j). Since VI and V2 are probability vectors,
n m

_i=0 vii = _'_j=o vzj = 1 and the above product is unity. This product can also be written as

vlo (v20 + vm +.-. + V2m) +"" + Vln (v20 + v2_ +"" + V2m). All the terms in this Cartesian product

can be reorganized as (vwv2.3) + (VloVm + vllv20) + (VloV22 + vllv21 + v12v20) + ..-, where the

expression within each pair of parenthesis is a vector entry of V1 _) 1/2. Since we have shown that

this sum is unity, V1 @ 1/_ is also a probability vector. []

Utilizing the above definitions, define Rk = (jk0, jkl," • ", jk,_) as a probability vector, where

jk_ is the probability that i jobs from an SBN processor at stage k are returned to a predecessor

17

at SBN stagek + 1 during a balancing operation. Then, Re-1 indicates the jobs returned to the

root processor that initiated the load-balancing operation, and can be computed by the following

recursive formula:

Stage 0:R0 = C(_5), and

Stage 1 < k < d: Rk = C(_stop + _comi_ @ Rk-1 @ Rk__),

where the function C reflects the SBN job return policy as charted in Fig. 8. Basically, the calcula-

tion function is used to add the jobs queued locally to the jobs that are expected to be returned from

the two successor processors. Once Re_l = (r0, rl,." r,_} is computed, E Jobs = }--]]=0(J x rj)

can also be calculated.

To compute EProcs, let ¢c = ¢0 + ¢1 + "'" + ¢,_ be the probability that a given processor

has c > stop number of jobs queued. The probability that a balancing message will reach a

processor at stage k < d in the SBN is therefore cbd-k-1 since the message must pass through
"r C

d - k - 1 predecessors. Since the number of processors at stage k < d in SBN is 2 d-k-l, we have

EProcs X-',d-1 (_)d-k-1 2d-k-l)= z..,k=0 _ c x , For example, if d = 5 and ¢c = 0.4, the expected number of

processors visited during a balancing operation is 3.3616.

From the above model, we can compute E Jobs and EProcs for various values of the system

load level (SysLL), the dimension d of the SBN, and the value of stop. Assuming a Poisson job

arrival rate, the probability vector • is easily obtained. The vector C(V) can be calculated by

utilizing the job return policy of the Heuristic Variant.

Figure 8 plots EProcs and EJobs values for this mathematical model. Here, P = 32 and SysLL

varies between 1 and 15. In the graphs, we analyze five prospective policies for a processor to ter-

minate load balancing, and compare their expected performance against the Basic SBN algorithm.

Recall that when a processor p executes the Basic algorithm after receiving a balancing message,

this message is forwarded to the next SBN stage unless p is at stage 0. The five policies for p to

stop balancing are:

Pi: when gLen(p) _> SysLL + 5 - i for 1 < i < 4,

7,5: when gLen(p) _> 2 if SysLL _< 2, or when gLen(p) _> 4 for other SysLL values.

Notice that policy 7'5 attempts to return at least one job under light system loads and at least two

jobs under heavier loads.

Figure 8(a) shows that if the Heuristic Variant is used with stop = SysLL + 1 (policy P4),

EProcs is significantly less than that of the Basic SBN algorithm. For example, if P = 32 and

SysLL = 4, only about 8 processors are visited on average using the Heuristic Variant, whereas all

31 processors are visited for the Basic algorithm. Furthermore, with the Heuristic Variant, Fig. 8(b)

indicates that E Jobs = 4.2 (compared to 8.8 with the Basic algorithm), a value much closer to the

SysLL value of 4. Therefore, a better load balance is achieved with significantly reduced balancing

traffic.

18

35 _ 40Basic SBN

•_ . =o2s
N B

o 1s-o
IO_\'_.. "--_--" - •

5 5"

ol , , , "-T T T v _ vT T ? 'T oI
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SysLI. SysLL

Figure 8: Expected number of (a) processors visited (EProcs), and (b) jobs returned (E Jobs) for

P = 32.

Figure 8(b) also gives an indication about optimal stop values with respect to SysLL. After a

successful load-balancing operation, qLen(p) for each processor p should approximate the SysLL

value. By the definition of SBN load-balancing algorithms, the processor that initiates load balanc-

ing has less than NinTh jobs queued for processing. E Jobs will then be optimal when it is almost

equal to SysLL. Figure 8(b) shows that this objective is achieved when stop = SysLL + 1. This is

intuitively correct because it implies that a processor will forward a load-balancing message to the

next SBN stage until an overloaded processor is encountered.

5 Experimental Study

This section describes the simulation environment and the test cases that were used to compare the

proposed SBN-based load-balancing algorithms with several existing methods. The performance

metrics used for comparison are explained, and comprehensive results obtained from simulation

experiments are presented.

5.1 Simulation Environment

All the load-balancing algorithms were implemented using MPI and tested with synthetically-

generated workloads on a 32-processor SGI Origin2000 located at NASA Ames Research Center.

We used MPI rather than OpenMP to implement the various algorithms since investigating the

programming paradigm is beyond the scope of this paper. The SBN strategy is topology and archi-

tecture !ndependent; thus it made sense to use a portable library like MPI. Furthermore, any benefit

provided by exploiting the Origin2000 shared-memory architecture would be equally available to

all the load-balancing schemes.

19

Thesimulationprogramspawnstheappropriatenumberof child processes and creates the de-

sired SBN topology. A list of all process labels and an initial distribution of jobs are then routed

through the network. In addition to the initial load, each processor dynamically generates addi-

tional jobs to be processed. Specifically, 10 job creation cycles are run where the number of jobs

generated at each processor during a cycle follows a Poisson distribution. By randomly picking

different values of A (the mean arrival rate), varying numbers of jobs are created. Therefore, both

heavy and light system load conditions are dynamically simulated. We have confined the scope of

this paper to independent tasks only. Jobs are processed by "spinning" for the designated amount

of time. The simulation terminates when all jobs have been processed. Note that as the number of

processors increases, the workload also increases by the same factor. It is thus expected that the

completion time should remain relatively constant if the algorithm scales efficiently.

Our experiments compare the performance of the SBN-based load-balancing algorithms with

six other commonly-used techniques. They are Random, Gradient, Receiver Initiated, Sender Ini-

tiated, Adaptive Contracting, and Tree Walking, as summarized in Section 2. The Basic SBN

scheme, its Heuristic Variant, and the Tree Walking algorithm utilize the SBN topology in their

implementation. The SBN topology, being somewhat similar to the binary tree structure required

by Tree Walking, provides a direct and fair comparison. The other algorithms and the SBN Hyper-

cube Variant are implemented utilizing a hypercube topology. This also demonstrates the ability

to embed the SBN approach onto another topology, and provides a fair comparison between the

Hypercube Variant and other load-balancing methods. By comparing the Hypercube Variant and

the Basic SBN algorithms, we can determine whether a change in topology results in any signif-

icant performance difference. Finally, the same experiments are also performed without any load

balancing, in order to have a reference point. All ten algorithms (six existing load balancers, three

proposed schemes, and no load balancing) are implemented using the same hardware and software

environment.

The results obtained from these experiments are shown in Figs. 9, 10, and 11. They were

compiled from repeating the simulations 10 times and averaging the results. We were limited to

10 runs by system usage limitations. Three separate load scenarios are considered as described

below:

Heavy System Load (cf. Fig. 9): An initial load of 10 jobs per processor is queued during the

first cycle of execution. Each execution cycle, including the first, is 1.0 sec in duration. At

the start of the remaining nine cycles, an average of 19.41 additional jobs are generated in ac-

cordance with the formula 200AJ / (e'Xj!), where A and j are randomly varied between 1 and

10. The constant, 200, is large enough to ensure that the time required to process the created

jobs is approximately double the 10.0 secs of execution (1.0 sec for each execution cycle),

thereby guaranteeing an overloaded condition. The duration of all jobs average 0.1 sec, with

the longest jobs requiring 0.2 sec. The entire simulation requires 10.0 secs plus the time

20

neededto emptyoutall of thejob queues.Optimalbalancingfor this expermentrequiresan

averageof 1.0secto processthe initial load,plus 19.41x 9 z 0.1 secsfor processingthe
additionalloadcycles,amountingto 18.469secs.

Transition from Heavy to Light System Load (cf. Fig. 10): An initial load of 50 jobs per

processor is queued to a small subset (log P) of processors during the first execution cycle.

This ensures the initial heavy load condition. Each execution cycle, including the first, is

4.0 secs in duration. At the start of the remaining nine cycles, an average of 12.96 additional

jobs are generated using the formula 260AJ / (e_j!), where the values of A and j are randomly

varied between 1 and 20. The constant, 260, is chosen so that a light load of jobs will be

generated at each execution cycle. The duration of all jobs average 0.2 sec, with the longest

jobs requiring 0.4 sec. If load balancing is effective, the entire simulation requires 40.0 secs

(4.0 secs for each execution cycle). Note that 10.0 secs is required to process the initial load,

plus 12.96 x 9 x 0.2 secs for processing the remaining cycles. This totals to 33.328 secs,

leaving an average of 0.667 sec of idle time per cycle.

Light System Load (cf. Fig. 11): This experiment is similar to the previous one except that

the initial load of jobs is very light. Specifically, an initial load of one job per processor is

queued to a small subset (log P) of processors during the first cycle of execution. Therefore,

a light system load exists throughout the experiment. The entire simulation requires 40.0 secs

(4.0 secs for each execution cycle), if load balancing is effective. Note that 0.2 sec is required

to process the initial load plus 12.96 × 9 × 0.2 secs to process the remaining cycles. This

totals 23.528 secs, leaving an average of 1.647 secs of idle time per cycle.

5.2 Performance Metrics

The data and bar charts included in Figs. 9-11 measure the comparative performance of the various

load-balancing algorithms on a 32-processor SGI Origin2000. The X-axis of the bar charts show

the number of processors used. The Y-axis tracks the following metrics:

Message Traffic Comparison: The total number of balancing and distribution messages that

were exchanged during the simulation.

Total Jobs Transferred: The total number of jobs that were transferred from one processor to

another. If a job is transferred multiple times before execution, each transfer is individually

counted. Note that it may have been appropriate to count multiple job transfers only once

since an actual data transfer would incur most of the overhead. However, the Total Jobs

Transferred metric as defined can be useful in that it gives an indication of the flexibility

of an algorithm: its ability to adapt to a rapidly changing dynamic load environment. For

21

example,load-balancingalgorithmsthat do notallow multiple transferswouldbe theleast
flexible andthusexpectedto generatethe smallestvaluesfor TotalJobsTransferred.Thus,

a load-balancingschemereturninga highvalueof thismetricisnot necessarilyundesirable.

Maximum Variance in Idle Time: The difference in processing time (in secs) between the

busiest processor and the least busy processor.

Total Time to Complete: The total amount of elapsed time (in secs) before all jobs are fully

processed.

5.3 Summary of Results

As mentioned earlier, the Basic SBN-based load-balancing algorithm (in short, SBN), its Heuristic

Variant (SBZ), and the Tree Walking algorithm (TWA) were implemented using the SBN topology,

while the other load-balancing schemes were implemented assuming a hypercube topology. Recall

that the Hypercube Variant of SBN (CUBE) utilizes the Basic SBN algorithm adapted for the

hypercube. Analyzing CUBE, we can determine whether performance improvements are due to

the proposed load-balancing algorithms or due to the SBN topology. The following paragraphs

analyze each of the four performance metrics measured in our experiments.

With respect to the Message Traffic Comparison metric, the Gradient algorithm ((3 RAD) gen-

erates, by far, the largest amount of message traffic. The Receiver Initiated algorithm (RECV)

also generates a large number of messages because of its tendency to become unstable under light

system loads. Idle processors can flood the system with job request messages in situations where

their neighbors do not have excess jobs to transfer. To alleviate this condition, we introduced a

0.1 sec delay between job requests. Longer delays tend to reduce the load-balancing effective-

ness of RECV under light loads. As expected, SBZ generates less message traffic than the other

two SBN schemes. Likewise, all SBN-based algorithms incur less communication than TWA. In

general, the algorithms that do the worst in terms of load balancing require little or no message

communication. For example, no load balancing (NOBAL) does not generate any message traffic,

proving that some interaction among processors is necessary to balance a system load.

Next consider the Total Jobs Transferred metric. During the heavy system load test (cf. Fig. 9),

the Total Jobs Transferred values are significantly less than that in the other experiments (cf.

Figs. 10 and 11). This is due to the fact that during heavy loads, most processors are busy and

not seeking additional jobs to process. Under the light system load test (cf. Fig. 11), the situation

changes. Here, the SBN-based algorithms generate the largest values because of their tendency

to pass jobs through more processors in order to satisfy those with low loads. It is important to

realize that the data associated with jobs need to be transferred only once, just before a job is about

22

P nobet rand grad recv send acwn twa sbrl cube sbz P nobal rand grad recv send acwn twa sbn cube sbz

2 0 20 63 25 34 99 18 12 14 8 2 0 183 33 12 155 109 31 42 60 65

4 0 71 586 257 130 381 102 85 75 43 4 0 472 195 124 459 325 142 237 189 204

8 0 207 2.426 1.{305 398 1,164 364 457 227 138 8 0 1.195 505 385 1 O49 1.298 498 983 656 790

!6 0 5!5 10,050 2,279 1,074 2,936 !,443 !,!52 703 460 !6 0 2,282 1.709 818 2,!57 4.122 1,296 2,649 1,874 2,!69

32 0 1,202 33.066 5.923 2,688 7,228 5,390 3,230 2.183 1,390 32 0 4,731 4.939 2,o41 4,720 12,068 3.272 6,118 6.527 6.246

average 0 403 9,238 1,904 885 2,362 1_463 987 640 408 average 0 1,773 1,476 878 1,708 3,584 1.048 2,006 1,861 1,913

Message Traffic Comparison

35._3

00.000

25,000

20,000

15,000

Z

10,000

5,000

I _g_

• send

m_'cm

• twa

mcube

r _-

2 4 8 16

Processors

32

Total Jobs Transferred

14,000

12,000 _--

10,000

5.000

6,000

4,000-

2,000

0

2 4 8 16 32

processors

P normal rand grad recv send acwn twa sb_ cube sbz P nobai rand grad recv send acvm twa stun cube sbz

2 8.13 1.51 0,36 3.CO 0.84 0.25 0.14 0.10 0.10 0,08 2 23.39 2042 16.09 21.22 19,24 19.37 19,67 18.44 17,93 20.04

4 11.76 4,87 1.42 1.49 2.03 0.44 0.20 070 0.19 0,25 4 24,61 2058 16.03 19.94 2111 19.38 19.38 20.0(3 18.57 20.81

8 23,15 8.79 0.81 2.44 2.80 0,77 0.30 0,33 029 1.37 8 30,03 26.68 1868 19.17 2096 20.40 19.36 19.16 1804 18.96

16 19.53 10.41 0.90 1.77 316 1.21 0.41 047 0.40 1.48 16 30.95 23,92 1876 18.95 20,41 19.74 19.21 1864 1940 20.16

32 2919 11.47 1.23 1,82 3.78 3.06 0.52 075 0.54 4.83 32 34.42 24,10 2Oll 19.78 2126 21.19 1960 18,33 1980 19.93

average 18.35 7,41 0.94 2.10 2,52 1.15 0.31 0.47 0.30 1.60 average 25.68 22.94 18.33 tg,81 20.60 20.02 1944 18.91 1875 19.98

Maximum Variance in Idle Time Total Time to Complete

30.00

30.00
25.(x)

A 20.00 i _ _ 25.ooi _-E 20.0o

18.00 ©

- 18,0(1

10'00 i i ' 10.00

0.00 _ ' ' ' '

2

processors

Figure 9: Performance under heavy system load.

23

P ndoal rand _rad recv send acwn lwa sbn cube sbz P nobal rand grad recv send acwn twa son cube sbz

2 0 14 139 274 33 48 2t 22 31 16 2 0 167 77 76 146 100 87 110 180 99

4 0 45 815 848 163 178 121 137 90 g5 4 0 438 219 166 373 385 333 385 372 392

8 0 147 4.095 1,863 447 534 538 519 495 247 8 0 1.004 810 442 976 1.329 956 1,334 11625 1,272

16 0 351 16,601 10.537 1,318 1,367 1,730 1,648 1.326 729 16 0 2.136 2.520 1.863 1.930 4,085 3.231 4,t79 5.399 3,500

32 0 834 58,155 26,821 3,428 3.216 7,375 5.185 3.824 2,128 32 0 4,574 6,683 5.320 4,077 10,933 8.043 15,271 14,278 9,863

average 0 278 15,961 8,069 1.078 1,069 1,957 1,502. 1.153 643 average 0 1.664 2,062 1.573 1.500 3,366 2.530 4,256 4,371 3,025

Message Traffic Comparison

6o,(x:o

50.0(

40,0(:

|

]
20,0(:

10.0_

Ii ncbal

Brand

__ [] grad

r'1recv

• send

[] ac"wn

lltwa

• cube

llsbz

16,000

14.000

12,000

10,000

_ 8,000

11

z

6.oo17

2,000

o

Total Jobs Transferred

2 4 8 16 32

Processors

p _ rand grad racy send acwn twa sbn cube s_z P _ rand grad racy send acwn twa sbn cube sbz

2 115.55 2.96 2.21 0,30 2.29 0.58 1.47 0,25 0,38 0.48 2 276.28 41,02 4121 40.86 42,15 40¸72 43,38 43,20 40¸02 39,90

4 200.23 12.51 1,19 1,65 2.47 2.44 1,51 1,16 0,71 0,89 4 329,78 42,15 40,45 41.39 40,01 39.95 39.97 40,35 40,94 39.90

8 304.'/'7 21,41 2.(3_ 1,34 3.51 2.65 2.41 1,21 1,07 1,03 8 371.73 46,20 40,17 41,11 40.72 40,71 3g,g7 40,22 40,19 40¸00

16 347.06 32,62 2.84 1,82 3.87 5.41 3.24 1,63 1,42 1 10 16 393.45 52.00 39,91 39.96 4009 40.04 39.94 40.08 39¸98 39¸92

32 481.26 42.38 2.68 2,26 10.11 10¸46 321 2.26 1.41 112 32 494.20 60.41 39,99 40,09 42.14 40¸75 40.09 39,93 39¸98 39¸91

average 289.78 22,38 2.20 1,47 4.45 4,31 2.37 1,30 1 ,[x_ 0,92 averagEi 373,09 48.36 40,35 40,68 41.02 40,43 40.67 40.76 40,22 39.93

Maximum Variance in Idle Time

c_.J.v,J

450.00 i

400¸00

350,00

300.00

¢

iE
150.00

100.00

50.00

,I I__
4 8 16 32

proclmso_

Total Time to Complete

450.00

400,00

350,011

|
c 250.00

|

150,00

=

2 4 8 16 32

Processors

Figure 10: Performance when transitioning from heavy to light system load.

24

p nobal rand grad recv send ac'_ "1 twa sbn cube sbz P noel rand grad recv sen acwn twa sb_ cube sbz

2 0 14 87 466 46 42 24 47 60 27 2 0 127 47 54 120 101 47 160 129 98

4 0 47 898 2,235 235 14'} 127 401 371 148 4 0 338 262 218 304 291 194 827 455 422

8 0 138 3,718 5,330 805 4C4 500 1,336 1,462 712 8 0 676 796 624 689 672 535 2,420 1,549 1,821

16 0 :337 1%92! 15,501 2,395 1,045 2.02 n. 3,9!7 4,5!0 2,433 18 0 1,58_ 1,851 1,693 1,348 1.929 1,545 6,172 4,523 5.405

32 0 805 43,243 4-3,950 6,151 2,40_) 11,862. 10,414 17,88t 8,313 32 0 3,093 4,454 4,411 3,044 4,197 4,509 13,668 14,118 16,007

average 0 268 11,973 13.616 1,926 808 2,9(39 3,223 4.917 2,327 average 0 1,163 1,482 1.400 1,101 1,438 1,386 4,649 4,155 4,751

45,008

40,00C

35,006

3O,0C_

25.000

20,000

15,000

10,000

5,0(;0

Message Traffic Comparison

m

2

m n,y,_

• rand

[] grad]

[] recv

msend

[] _cwn _

Dsbn

mett_

msl:_

4 8 16 32

ProcesBors

P nobal rand grad recv send acv_r+ twa sbn cube sbz

2 9.35 3.51 1,49 0.52 1.21 0.8_, 7.60 1.02 0.98 0.78

4 2128 9.78 2.21 1.13 3.77 313 9,48 0.94 1.50 2.30

8 26.02 12.33 3,42 1 52 8.07 767 15.98 1.69 1 74 1.65

16 40.10 14,85 4.71 2.02 9_50 9,9! _ 17.89 2.61 209 2.28

32 42.11 1852 4.73 2.47 8.67 12.9_ 19,33 4.06 2,44 2.44

Total Jobs Transferred

19,000

15,c00I

14.000 I

12,_0 [

15

1

2 4 Proc_amor_ 16 32

6,000

4,000

2,000

0

P nobaJ rand grad recv send acwn twa son cube sbz

2 40.94 39.90 40.11 39.92 40.69 41.01 40.55 39.91 3996 39.92

4 42.04 40.82 39.91 39.91 40.01 39,93 39.95 39.97 3992 3996

8 42,67 39.96 39.93 39.94 40.01 3992 42.48 39.89 3997 39,93

16 47,73 3998 39.97 39.96 40_01 39.95 40.70 39.90 3996 3997

32 49,05 39.95 39.86 39.95 40.02 39.91 41.54 39.95 39.97 39.98

average 27.57 11.80 3.31 1,53 5.84 6.9(_ 14.06 2.06 1.75 189 average 44.49 40.12 39.98 39.94 40.15 40.14 41.04 39.92 3996 3995

4500.

Maximum Variance in Idle Time

[] i '

i j

Total Time to Complete

'::lmWmw||/

15.00 _mo 1

2 4 ProcSrs 16 32

Figure 11" Performance under light system load.

25

to execute.Note alsothat the SBNalgorithmsutilize bulk transfersin sendingdistribution mes-

sagesto relocatejobs. Thesecharacteristicsreducethe negativeeffectsof messagelatencyand
minimizethe additionaloverheadthat is incurred. As would beexpected,theRandom(RAND)

andSenderInitiated (SEND) algorithmsthatallow only onejob transferbeforeexecution,have
thesmallestTotal JobsTransferredvalues.However,an interestingresult is that AdaptiveCon-

tracting(ACWN),which alsodoesnotallowjobs to bereroutedmorethanonce,hasahigherTotal
JobsTransferredmeasure.This is dueto thefact thatACWN doesmorework to balancetheload

initially (whenjobs arrive)thantheotheralgorithms.In fact,duringtheheavysystemloadtest(cf.

Fig. 9), TotalJobsTransferredvaluesfor ACWN is amongthehighest.
Whenconsideringthe Maximum Variancein Idle Time metric, NOBAL obviouslyperforms

theworstby far. RAND, althoughreducingtheidle time, is muchlesseffectivethan theothers.
SEND and ACWN have similar performance, which is somewhat better than RAND. Note that

RAND, ACWN, and SEND do not allow multiple job migrations. This feature prevents these

algorithms from efficiently adapting to a dynamic job execution environment. TWA shows a large

imbalance under light system loads (cf. Fig. 11) that could stem from its lack of using a minimum

processor workload threshold.

The last metric is the Total Time to Complete. Recall that the amount of work is increased

proportionately with the number of processors (e.g., twice as much processing is required for

P = 8 than for P = 4). Under light loads (cf. Fig. 11), only NOBAL and TWA fail to complete

within the optimal amount of time (40.0 secs). This is consistent with the results discussed above

where both approaches show a large variance in processor idle time. Similarly, under the heavy-

to-light load test (cf. Fig. 10), most of the algorithms finish at near-optimal times (approximately

40.0 secs). Here, only NOBAL and RAND could not process the job queues within the expected

time. If we observe the values from the chart in Fig. 9 for the Total Time to Complete, the best

average results for the heavy system load test were recorded by SBN, CUBE, and GRAD.

To compare the overall performance of the SBN-based algorithms to the other approaches, first

note that the performance of CUBE is very similar to that of SBN. This indicates that our compar-

isons are fair even though the topology of SBN is different from that of the other algorithms. The

similarity in performance between CUBE and SBN is not surprising since both topologies have a

depth of log P and use the same basic balancing approach.

To continue with our performance comparison, consider the heavy system load (cf. Fig. 9)

experiment. In this test, Total Time to Complete is the most important metric. Clearly, NOBAL

and RAND are the worst performers, and are hence non-competitive. Looking at the average

performance of the experiment, we find that SEND, ACWN, and SBZ are worse than the average

performance of SBN and CUBE by 6% to 10%.

We next look at the experimental results under the transition from heavy to light system load

(cf. Fig. 10) and the light system load (cf. Fig. tl) scenarios for the remaining five algorithms

26

(GRAD, RECV, TWA, SBN, and CUBE). In these two tests, Message Traffic Comparison is the

most important metric since we expect the completion times to be near-optimal for all reasonable

load-balancing approaches. Figures !0 and ! ! show that GRAD and RECV have significantly

greater message traffic than TWA and the SBN-based algorithms.

While comparing TWA to the SBN algorithms, we also want to determine how much load-

balancing overhead is incurred by TWA. This is important because TWA suspends application

processing during balancing. Our results show that TWA spends between 3.23% and 4.86% of

the execution time in balancing a network of 32 processors. With a network of 16 processors,

the overhead varies between 0.73% and 1.08%. Based on the superlinear increase in the fraction

of time spent by TWA in balancing the load, the overhead could potentially become intolerable

for large networks of processors. By contrast, SBN hides all of the load-balancing time since

processing is never suspended.

Based on the above analysis, we conclude that the SBN approach is a viable alternative and

compares favorably with other load-balancing algorithms. All three SBN strategies are effective

because global load information is obtained from all processors to balance the system load. Most

of the other load-balancing algorithms work only locally with processors interacting with their im-

mediate neighbors; therefore, the load information is likely to be less accurate. Even though the

SBN approach is global, the load-balancing overhead is significantly reduced because the depth of

an SBN of P processors is log P. Furthermore, the fact that SBN-based algorithms allow applica-

tion processing to continue uninterrupted during load balancing makes them latency tolerant: most

of the communication and data distribution overhead is hidden under processing.

6 Conclusions

In this paper, we have proposed three new load-balancing algorithms (Basic, Hypercube Variant,

and Heuristic Variant) based on a topology-independent logical communication pattern among

processors, called a symmetric broadcast network (SBN). A detailed experimental investigation

with synthetic workloads showed that this approach to load balancing compares favorably with

several other schemes. The metrics that measure the Maximum Variance in Idle Time and Total

Time to Complete, demonstrate that all three algorithms are effective in balancing the system load

while optimizing the completion and idle times. The Message Traffic Comparison metric shows

that use of the Heuristic Variant reduces the overhead associated with load balancing traffic when

compared to the two other SBN-based algorithms.

The Basic SBN algorithm has been extended and effectively applied to a dynamic adaptive-

mesh application to balance processor workloads while significantly reducing the data redistribu-

tion costs [4]. This optimization was possible by overlapping processing and workload migration.

The latency-tolerance feature makes the SBN approach a natural choice for grid and cluster corn-

27

puting environmentsconsistingof heterogeneouscomputers.The SBN topologyalsoprovides
fault tolerancethat would allow applicationsto continuecorrectexecutionwhile usingresources

thatareconstantlychanging.Thesewilt bethefocusof futureresearch.

Acknowledgements

This work was supported in part by Texas Advanced Research Program Grant Number TARP-97-

003594-013 and by NASA Ames Research Center under Cooperative Agreement Number NCC

2-5395. The authors would like to thank Prof. Michael Palis (JPDC SAE) and the anonymous

referees for their constructive and detailed reviews of the paper.

References

[1]

[2]

[3]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, "Introduction to Algorithms," MIT Press,

Cambridge, MA, 1989.

G. Cybenko, Dynamic load balancing for distributed-memory multiprocessors, J. Parallel

Distrib. Comput. 7 (1989), 279-301.

S. K. Das, D. J. Harvey, and R. Biswas, Adaptive load-balancing algorithms using symmetric

broadcast networks: Performance study on an SP2, in "Proc. 26th International Conference

on Parallel Processing, Bloomingdale, IL, 1997," pp. 360-367.

[4] S. K. Das, D. J. Harvey, and R. Biswas, Parallel processing of adaptive meshes with load

balancing, IEEE Trans. Parallel Distrib. Systems 12 (2001), to appear.

[5] S. K. Das and S. K. Prasad, Implementing task ready queues in a multiprocessing environ-

ment, in "Proc. International Conference on Parallel Computing, Pune, India, 1990," pp. 132-

140.

[61

[7]

S. K. Das, S. K. Prasad, C-Q. Yang, and N. M. Leung, Symmetric broadcast networks for im-

plementing global task queues and load balancing in a multiprocessor environment, Technical

Report CRPDC-92-1, Department of Computer Science, University of North Texas, 1992.

D. L. Eager, E. D. Lazowska, and J. Zahorjan, Adaptive load sharing in homogeneous dis-

tributed systems, IEEE Trans. Software Engineering 12 (1986), 662-675.

[8] D. L. Eager, E. D. Lazowska, and J. Zahorjan, A comparison of receiver-initiated and sender-

initiated adaptive load sharing, Performance Evaluation 6 (1986), 53-68.

28

[9] R.Els_isser,A. Frommer,B.Monien,andR. Preis,Optimalandalternating-directionloadbal-

ancingschemes,in "EuroPar'99 Parallel Processing (E Amestoy et al., Eds.), Lecture Notes

in Computer Science, Vol. 1685, pp. 280-290, Springer-Ver!ag, Berlin, !999."

[10] M. R. Eskicioglu, Design issues of process migration facilities in distributed systems, in

"Scheduling and Load Balancing in Parallel and Distributed Systems, IEEE Computer Soci-

ety Press, Los Alamitos, CA, 1995," pp. 414-424.

[11] G. Fox, A. Kalawa, and R. Williams, The implementation of a dynamic load balancer, in

"Proc. Conference on Hypercube Multiprocessors, 1987," pp. 114-121.

[12] Y. E Hu and R. J. Blake, An improved diffusion algorithm for dynamic load balancing, Par-

allel Comput. 25 (1999), 417-444.

[13] E Krueger and M. Livny, The diverse objectives of distributed scheduling policies, in "Proc.

7th International Conference on Distributed Computing Systems, Berlin, Germany, 1987,"

pp. 242-249.

[14] E C. H. Lin and R. M. Keller, The gradient model load balancing method, IEEE Trans.

Software Engineering 13 (1987), 32-38.

[15] R. L/iling, B. Monien, and E Ramme, Load balancing in large networks: A comparative

study, in "Proc. 3rd Symposium on Parallel and Distributed Processing, Dallas, TX, 1991,"

pp. 686-689.

[16] S. Pulidas, D. F. Towsley, and J. A. Stankovic, Embedding gradient estimators in load bal-

ancing algorithms, in "Proc. 8th International Conference on Distributed Computing Systems,

San Jose, CA, 1988," pp. 482-490.

[17] K. G. Shin and Y. C. Chang, Load sharing in hypercube multicomputers for real-time ap-

plications, in "Proc. Conference on Hypercubes, Concurrent Computers, and Applications,

1989," pp. 617-621.

[18] B. A. Shirazi, A. R. I-Jurson, and K. M. Kavi, "Scheduling and Load Balancing in Parallel

and Distributed Systems," IEEE Computer Society Press, Los Alamitos, CA, 1995.

[19] N. G. Shivaratri, R Krueger, and M. Singhal, Load distributing for locally distributed systems,

IEEE Computer, 25 (1992), 33-44.

[20] W. Shu and M.-Y. Wu, Runtime incremental parallel scheduling (RIPS) on distributed mem-

ory computers, IEEE Trans. Parallel Distrib. Systems 7 (1996), 637-649.

29

[21] J.Song,A partially asynchronousanditerativealgorithmfor distributedloadbalancing,Par-

allel Comput. 20 (1994), 853-868.

[22] C.-Z. Xu and E C. M. Lau, Analysis of the generalized dimension exchange method for

dynamic load balancing, J. Parallel Distrib. Comput. 16 (1992), 385-393.

[23] C.-Z. Xu and E C. M. Lau, "Load Balancing in Parallel Computers: Theory and Practice,"

Kluwer, Boston, MA, 1997.

[24] C.-Z. Xu, E C. M. Lau, B. Monien, and R. Liiling, Nearest-neighbor algorithms for load

balancing in parallel computers, Concurrency: Practice and Experience 7 (1995), 707-736.

30

